ПИРОГЕННОЕ ВОЗДЕЙСТВИЕ НА ПЕДОКОМПЛЕКСЫ МИКРОАРТРОПОД В ШЕЛКОПРЯДНИКАХ НИЖНЕГО ПРИАНГАРЬЯ

В южнотаежной подзоне Приенисейской Сибири вспышки массового размножения сибирского шелкопряда приводят к гибели хвойных лесов (обзоры см. Баранчиков и др. 2001; Кондаков, 2002). На территории Усольского лесхоза Красноярского края в шелкопрядниках 6-8 летней давности усохший древостой остается на корню с запасом 130-180 м³/га, захламленность валежником при этом составляет 40-60 м³/га. Бурно разрастается напочвенный травянистый покров с преобладанием видов злаковых и кустарники. Сильное задернение почвы, отсутствие семенного материала задерживает естественное восстановление хвойных. Участки тайги, поврежденные сибирским шелкопрядом, превращаются в склад сухой древесины, заросший травяно-кустарниковой растительностью. Это стимулирует возникновение частых и очень интенсивных пожаров, охватывающих обширные пространства (Фуряев, 1966; 1996).

Снижение пожарной опасности на этих участках леса и лесовосстановление на них связаны, прежде всего, с очисткой территории от мертвого древостоя и больших запасов наземных горючих материалов. Эффективным и экономически целесообразным средством ликвидации шелкопрядников, является их контролируемое выжигание (Валендик и др., 2000).

Почва, важный компонент лесного сообщества, реагирует как на повреждение леса шелкопрядом, так и на воздействие огня (Почвенно-экологические ..., 1982; Попова, 1997; Баранчиков и др., 2002; Краснощеков и др., 2003; Краснощеков, Випнякова, 2003). Наблюдается трансформация морфологического облика почвы, ее физикохимических и биологических свойств. Комплексы почвенных беспозвоночных являются достаточно устойчивыми структурами и нарушения их качественнго и количественного состава отражают степень воздействия экзогенных факторов в целом на всю систему (Почвенноэкологические ..., 1982; Криволуцкий, 1994; Ганин, 1997).

Цель настоящих исследований - оценить воздействие пироген-

Энтомологические исследования в Сибири. Вып.3. Красноярск: ИЛ СО РАН, 2004

ного фактора на педокомплексы микроартропод в шелкопрядниках Нижнего Приангарья Красноярского края.

Исследования проводили в Усольском лесхозе в пихтарнике травяно-зеленомошном (контроль), на участке леса, погибшего из-за полной дефолиации сибирским шелкопрядом в 1996 году и на участке после контролируемого выжигания шелкопрядника. Вывал сухостоя и прокладка защитной минерализованной полосы по периметру шелкопрядника проведены в начале сентября 2001 г. лесопожарным агрегатом АПЛ-55, контролируемое выжигание — в июне 2002 г.

Анализ физико-химических и химических свойств почв проводили общепринятыми методами (Аринушкина, 1970). Образцы на почвенных микроартропод отбирали в июне и августе в 10-кратной повторности по слоям: подстилка, 0-5см и 5-10см (Дунгер, 1987).

Почвы конгрольного и экспериментальных участков дерновоглубокоподзолистые. Под шелкопрядниками отмечается усиление дернового процесса, что в свою очередь отражается на интенсивности и продолжительности пирогенного воздействия на почву. Подстилки ненарушенных травяно-зеленомошных пихтарников отличаются слабокислой реакцией среды (рН 5.7) и низким содержанием зольных элементов (табл. 1). В шелкопрядниках зольность несколько увеличивается, реакция среды остается слабокислой. После-пожарное формирование почв непосредственно связано с пирогенной трансформацией органогенных горизонтов и их изменчивость служит индикатором воздействия пожара на почву. В результате интенсивного пожара на поверхности почвы образуется новый специфический горизонт (Опип), состоящий из обугленных, не сгоревших полностью, остатков лесной подстилки и золы мощностью 1-1,5см. Происходит сдвиг кислотности в сторону подщелачивания раствора (рН 8.7) и высвобождение большого количества зольных элементов, что отражается в химических свойствах почвы. Отмечается увеличение как валовых так и подвижных соединений фосфора и калия в верхних почвенных горизонтах, которое можно рассматривать как позитивное влияниие пирогенного фактора.

Плотность мелких членистоногих дерново-подзолистой почвы пихтарника травяно-зеленомошного (контроль) в среднем за вегетационный период составляет 31,4 тыс. экз/м², увеличиваясь в течение сезона в 3 раза (рис. 1). 54 % населения сосредоточено в подстилке и в верхнем 0-5см слое почве. Причем, в июне беспозвоночные больше тяготеют к почве (7,9 тыс. 9кз/м²), в августе—к органогенному горизонту (27,5 тыс. 9кз/м²). Основу комплекса составляют клещи—17,4 тыс. экз/м², среди них 74 % приходится на панцирных клещей (Oribatida), на гамазовых (Gamasina) — 26% (табл. 2). Орибатиды на

участков										
	Tavau-	i L		Валовые, %	%	Подвижн	Подвижные, мг/кг	Обмен	Обменные катионы	ино
т ори-	на, см	водный	С	P ₂ O ₅	K ₂ O	P ₂ O ₅	K ₂ O	Ca ²⁺ Mr/3	²⁺ Mg ²⁺ мг/экв на 100 г	Or H
					Контроль					
	0-2	5,7	46,0	0,52	0,05	76,0	589,9	14,9	11,4	4,3
•	2-10	5,3	4,6	0,14	1,17	127,0	681,1	12,9	6,7	4,6
	10-27	5,0	2,6	0,13	1,16	32,0	217,9	9,1	3,2	5,1
BT	. 30-40	5,4	1,0	0,09	1,25	45,0	102,8	& ယ	3,6	2,4
	50-60	5,7	0,8	0,09	1,43	58,0	108,6	17,9	5,4	1,7
С	80-90	5,9	0,5	0,09	1,48	82,0	95,8	16,1	5,0	1,0
				E	[елкопрядни	\sim				
	0-1	5,9	44,8	0,39	0,39	69,0	467,7	25,4	11,2	7,5
	1-14	5,5	3,8	0,19	1,21		406,5	16,8	14,2	2,0
	14-22	5,1	2,1	0,16	1,32		158,4	11,9	3,1	5,1
ELBT	25-35	5,2	1,3	0,15	1,30		84,8	11,6	2,9	5,0
	35-55	5,4	0,9	0,15	1,44		93,2	:15,3	4,6	3,6
	65-75	5,8	0,5	0,09	1,53		78,2	14,1	4,7	0,5
				Гарі	5 2002 г. (ик	Ħ				
	0-1	8,7	25,5	1,26	1,01	850,0	2016,0	32,9	12,3	•
	1-10	5,1	3,9	0,17	1,17	99,0	608,7	11,4	3,2	4,1
	10-20	5,2	2,0	0,15	1,19	52,0	292,8	12,1	3,4	4,0
,	20-30	5,3	1,5	0,11	1,33	52,0	145,6	11,7	3,5	4,4
	30-40	5,3	0,9	0,11	1,21	67,0	92,6	11,9	υ 33	4,4
		'n	10	0.10	1,26	71,0	95,4	12,1	3,3	3,9
BT BThh	4-50	ر, ر	٧,٠					110		

84% представлены обитателями мелких скважин почвы и подстилки (оппиоидный морфо-экологический тип) и на 11% поверхностнообитающими клещами (галюмноидный, карабодоидный и дамеоидный морфо-экологические типы). Среди ногохвосток (Collembola) в ненарушенном пихтарнике подстилочные, подстилочно-почвенные и почвенные формы представлены в относительно равных долях (рис. 2). В течение вегетационного периода их соотношение незначительно меняется – к августу отмечено слабое (на 5-6%) уменьшение доли подстилочных и почвенных и, соответственно, увеличение доли подстилочно-почвенных ногохвосток.

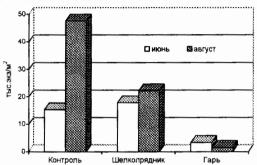


Рис. 1. Плотность микроартропод на контрольном и экспериментальных участках.

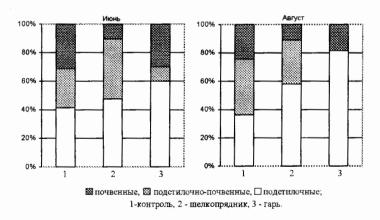


Рис. 2. Долевое соотношение жизненных форм коллембол на контрольном и экспериментальных участках.

Через 6 лет после воздействия шелкопряда плотность почвенного населения мелких беспозвоночных составляет 20,0 тыс. $983./m^2$, что в 1.5 раза ниже контрольного участка (рис. 1). Основным местообитанием является подстилка — в ней сосредоточено до 55% всего населения мелких членистоногих. Динамика плотности микроартропод в шелкопряднике в течение вегетационного периода менее выражена, чем в ненарушенном сообществе. Однако соотношение ногохвосток и клещей существенно изменяется — в июне клещи составляют 75,5% всего комплекса, в августе = 43,9% (табл. 2). Среди них на орибатид

Таблица 2 Групповой состав и количество (экз./м 2) почвенных микроартропод на контрольном и экспериментальном участках

Группы	Слой,		Июнь			Август	
	СМ	Γ	Ш	K	Γ	Ш	K
Коллемболы	Подст.	-	1924	2444	-	4604	11388
	0-5	312	1508	4888	1040	7644	8268
	5-10	206	936	832	364	208	208
Isotomidae	Подст.	-	1404	884	-	3328	6760
	0-5	312	780	1768	1040	3484	6032
	5-10	52	468	312	104	52	52
Hypogastruridae	Подст.	-	468	104	-	52	1092
	0-5	0	312	988	0	3952	1040
	5-10	52	156	52	0	104	0
Onychiuridae	Подст.	-	52	468	-	1224	3432
•	0-5	0	416	1612	0	208	1196
	5-10	104	312	468	260	52	156
Entomobryidae	Подст.	-	0	988	-	0	0
	0-5	. 0	0	104	0	0	0
	5-10	0	0	0	0	0	0
Tomoceridae	Подст.	, -	0	0	-	0	104
	0-5	0	0	416	0	0	0
	5-10	0	0	0	0	. 0	0
Клещи	Подст.	-	9776	3744	-	5826	16068
	0-5	2756	3016	2964	52	3034	11284
	5-10	104	676	416	52	884	312
Gamasina	Подст.	· -	884	1040	-	1352	3068
	0-5	572	468	1300	52	936	1716
	5-10	52	156	156	0	364	208
Oribatida	Подст.	-	8892	2704	-	4474	13000
	0-5	2184	2548	1664	0	2098	9568
	5-10	52	520	260	52	520	104
Примечание: Т	- rank	2002 ro	ла III —	пјелкоп	пялник.	К – кон	троль.

Примечание: Г – гарь 2002 года, Ш – шелкопрядник, К – контроль.

приходится до 81%. Доминируют те же морфо-экологические типы панцирных клещей, что и на контрольном участке. Анализ жизненных форм коллембол показал, что в пихтарнике, пройденном шелкопрядом, в течение всего вегетационного периода сохраняется доминирование подстилочных и подстилочно-почвенных ногохвосток, на них приходится около 90% (рис. 2).

Пожар существенно изменил экологическую обстановку: уничтожение подстилки привело к увеличению степени инсоляции площади и создало дефицит влаги, что в первую очередь отразилось на состоянии педокомплексов микроартропод. Сразу после пожара плотность населения мелких беспозвоночных снизилась в 4.5-5 раз по сравнению с контрольным участком и шелкопрядником и составила 4,4 тыс. экз./м² (рис. 1). Уничтожение подстилки привело к смене местообитания - до 90 % всех микроартропод сосредоточены в верхнем (0-5см) слое почвы. Основу комплекса, как и в других сообществах, составляют клещи (85%) при доминировании орибатил (78% от числа клещей). Панцирные клещи представлены одним морфо-эколгическим типом - гипохтоноидным, их доля в контроле и в шелкопряднике не превышала 10%. Это примитивные неспециализированные обитатели слоев полстилки. Приуроченность ланной экологической группы к влажным местообитаниям, в меньшей степени подвергающихся воздействию огня, способствовала ее сохранению после пожара. На свежей гари 60% ногохвосток приходится на подстилочные и 30% на почвенные формы. В течение вегетационного периода тенденция негативного воздействия пирогенного фактора на почвенное население сохраняется. Изменение гидротермических условий на поверхности почвы приводит к уменьшению через два месяца после пожара плотности микроартропод до 1,5 тыс. экз./м², тогда как в шелкопряднике и на контрольном участке сезонная динамика носит обратный характер. Кроме того, значительно снижается плотность населения клещей при равном долевом соотношении панцирных и гамазовых клещей она не превышает 104 тыс. экз./м². Среди коллембол сохраняется доминирование подстилочных форм.

Таким образом, изучение пирогенного воздействия на педокомплексы микроартропод в шелкопрядниках показало, что максимальной плотностью мелких членистоногих характеризуется почва под ненарушенным травяно-зеленомошным пихтарником. В комплексе доминируют панцирные клещи. Коллемболы представлены равным соотношением подстилочных, почвенно-подстилочных и почвенных жизненных форм. Дефолиация древостоя приводит к значительному снижению плотности населения мелких членистоногих, в комплексе сохраняется доминирование клещей и увеличивается доля подстилочных и подстилочно-почвенных ногохвосток вследствие дополнительного поступления большого количества мертвого растительного вещества и активизации дестуркционных процессов. Пожар в шелкопряднике приводит к резкому снижению плотности микроартропод, население клещей сокращается в сотни раз. Снижается разнообразие морфо-экологических типов орибатид. Среди коллембол доминируют подстилочные формы. Возможно, что сохранение подстилочных обитателей как среди орибатид, так и среди коллембол, связано с их приуроченностью к более влажным местообитаниям, где воздействие огня понижено.

Литература

Аринушкина Е.В. Руководство по химическому анализу почв. – М.: МГУ, 1970. – 487 с.

Баранчиков Ю.Н., Перевозникова В.Д., Вишнякова З.В. Эмиссия углерода почвами шелкопрядников // Экология. — 2002. — № 6. — С. 422-425.

Баранчиков Ю.Н., Кондаков Ю.П., Петренко Е.С. Катастрофические веньшки массового размножения сибирского шелкопряда в лесах Красноярского края // Безопасность России. Региональные проблемы безопасности. Красноярский край. – Москва: МГФ "Знание", 2001. – С. 146-167.

Валендик Э.Н., Векшин В.Н., Верховец С.В., Забелин А.И., Иванова Г.А., Кисиляхов Е.К. Управляемый огонь на вырубках в темнохвойных лесах. – Новосибирск: Изд-во СО РАН, 2000. – 209 с.

Ганин Г.Н. Почвенные животные Уссурийского края. – Владивосток-Хабаровск: Дальнаука, 1997. – 160 с.

Дунгер В. Учет микроартропод (микрофауна) // Количественные методы в почвенной зоологии. – М.: Наука, 1987. – С. 26-51.

Кондаков Ю.П. Массовые размножения сибирского шелкопряда в лесах Красноярского края // Энтомологические исследования в Сибири. – Вып. 2. – Красноярск: КФ РЭО, 2002. – С. 25-74.

Фуряев В.В. Шелкопрядники тайги и их выжигание. – М.: Наука, 1966. – 90 с.

Фуряев В.В. Роль пожаров в процессе лесообразования. – Новосибирск: Наука, 1996. – 253 с.

Криволуцкий Д.А. Почвенная фауна в экологическом контроле. – М.: Наука, 1994. – 270 с.

Краснощеков Ю.Н. Вишнякова З.В., Перевозникова В.Д., Баранчиков Ю.Н. Эколого-биологические особенности почв шелкопрядников в южной тайге Средней Сибири // Известия АН. Сер. биол. наук. – 2003.

Краснощеков Ю.Н. Вишнякова З.В. Изменения свойств почв в очагах размножения шелкопряда // Почвоведение. – 2003. – № 12. – С. 1453-1462.

Почвенно-экологические исследования в лесных биогеоценозах. – Новосибирск: Наука, 1982. – 185 с.

Новые публикации

Ann Hajek. Natural enemies. An introduction to biological control. – Cambridge: Cambridge University press, 2004. – i-xv, 378 p.

Книга Энн Хаяк "Естественные враги. Введение в биологический контроль" - добротное учебное пособие, рассчитанное не только на студентовэкологов, но и на более широкий круг интересующихся читателей. Автор рассказывает об основах использования организмов - естественных врагов хозяйственно
важных видов членистоногих, позвоночных, сорняков и патогенов растений. В
книге раскрыты причины использования методов биологического контроля, обсуждаются стратегии их применения и связанные с этим аспекты экологической
безопасности. Обсуждается, как наилучшим образом интегрировать методы биологического контроля в общую систему управления популяциями вредителей.
Подробно описана экология основных групп организмов, используемых для целей
биологического контроля, приводятся примеры наиболее успешного их использования.

Автор, профессор кафедры энтомологии Корнельского университета, США, - известный специалист в области патологии беспозвоночных. Именно с её именем связано широкое использование энтомопатогенных грибов (в частности, Entomophaga maimaiga) для успешного контроля непарного шелкопряда, интродуцированного недавно в США усача Anaplophora glabripennis и других вредителей древесных растений.

Книга детально иллюстрирована огромным количеством чётких чернобелых фотографий, рисунков и схем. Основной текст глав часто перебивается модными теперь в американских учебниках вставками — "боксами", посвященными "историям по поводу": примерам использования того или иного организма, биографии ученого, отдельным методикам. Каждая глава заканчивается списком литературы, рекомендованной для самостоятельного изучения. Книга снабжена словарем терминов и общирным предметным указателем.

Стоимость экземпляра книги в мягком и твердом переплете — 42 и 100 долларов США, соответственно.

Ю.Баранчиков